Orchestrating Coherence and Consistency

iIn Heterogeneous Shared Memory Systems

Caroline Trippel
Assistant Professor of Computer Science & Electrical Engineering
Stanford Differentiated Access Memories Project
May 10, 2024



20 years ago, fundamental power limits
forced a move to multi-core processors

50 Years of Microprocessor Trend Data

T | | ! P\ A
L o """" q.i waa s Transistors
e | Fundamental power llmlts ‘LA‘A (thousands)
I N M. |
i A iA : .
10° k P o o Single-Thread
s Y Performance ,
10* | s A ’}" | (SpecINT x 10%)
‘ i
AL 474 Gat Frequency (MHz)
3 AA A 5
107 o O'G ; .
, L A . o .ﬂ-. 3 plﬁa; Power
i0“pr A v atts
A .:= evvv
B m " w oWy _ umber of
10 . A = vor Voo 3 Logical Cores
10° —’: ——————————— X. rrrrrrr R R B -
| | |
1970 1980 1990 2000 | 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp



n
g
2 2017
]
]
3
=
£
5 2016
N
(=]
NE
N
35 2015
(=}
N
80
£
Z
5
> 2014

H. Zhang et al.’s axiomatic memory models for operational SoC modules [ZTM1 18]
Y. A. Manerkar et al. link pspec models to Verilog RTL [MLMP17]

C. Trippel et al.’s full-stack memory model verification approach [TI\/IL+17, MTL+16]
D. Lustig et al.’s Streamlined Causal Consistency (SCC) [LWPG17]

D. Lustig et al.’s uspec DSL for specifying a hardware system axiomatically [LSMB16]
ARM ISA-Formal framework [RCDT 16]

. Batty et al. specify C11 and OpenCL SC atomics axiomatically [BDW16]

. Nienhuis et al. specify C11 operationally [NMS16]

. Lustig’s thesis [Lus15]

QUXUREZ

. Petri et al. specify Java’s memory model operationally [PVJ15]
ARMvVS adds explicit support for release consistency [ARM13b]
D. Lustig et al.’s seminal work on phb analysis [LPM14]

Memory consistency model formalization efforts

2004 — 2014:
MCMs for HLLs &
'ormal MICM Specifications

2005: Intel’s first multicore silicon production beging  =p 2005
2004: AMD demonstrates first x86 multicore processor =P 200

J. Alglave’s Herding Cats [AMT14]
RISC-V Atomics Extension memory model [WLPA14]

J. Alglave’s hierarchy of weak memory models [Algl2]
Mador-Haim et al. specify Power axiomatically [I\/IHIVIS+12]
Standardization of C/C++ memory model [ISO11a,ISO11b]
M. Batty et al. specify C/C++ [BOST11]

Sarkar et al. specify Power operationally [SSA+11]

ARM errata for load—load hazard [ARM11]

RISC-V Baseline memory model [WLPA11]

J. Alglave’s thesis [Alg10]

Owens et al. specify x86-TSO operationally [OSS09]

H. Boehm and S. Adve define a memory model for C++ [BAO0S8]
ARMv7 memory model [ARMOS]

Arvind and J.-W. Maessen’s Instruction Reordering + Store Atomicity [AMO06]
J. Manson et al. specify a memory model for Java [MPAO5]

Intel’s first multicore silicon production begins [Int05]

AMD demonstrates first x86 multicore processor [AMDO04]

2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993

1992

1991
1990

1979 — 2004:

MCMs for Multiprocessors

1989
1988
1987
1986
1985
. 1984
1983: IBM System/370 memory consistency model =p- 1989
1981
1980

1979: Lamport’s sequential consistency for multiprocessors = 1579

S. Hangal et al.’s TSOTool [HVMLO04]

IBM introduces finer-grained synchronization in POWER4 ISA (1sync/lwsync) [TDF+01]

Commit-Reconcile memory model [SAR99]

S. Adve and K. Gharachorloo’s memory model tutorial [AG95]
K. Gharachorloo’s thesis [Gha95]

SPARC Relaxed Memory Order (RMO) memory model [SPA94]
IBM PowerPC memory model [MSSW94, CSB93]

S. Adve’s thesis [Adv93]

Alpha memory model [Cor92]

W. Collier’s store atomicity framework [Col92]

SPARC Total Store Order (TSO) and Partial Store Order (PSO) memory models [SPA91]
Gharachorloo et al.’s Release Consistency (RC) [GLLT90]

S. Adve and M. Hill’s Weak Ordering [AH90]

J. Goodman’s Processor Consistency [Goo89]

Dubois et al. propose weak memory models [DSB86]

IBM System/370 memory model [IBM83]

L. Lamport’s SC for multiprocessors [Lam79]

A. Manerkar et al. extend the phb analysis paradigm to handle cache coherence protocols [MLPM15]
. Lustig et al.’s precise memory model specification format and translation framework [LTPM15]



Memory consistency (and cache coherence) for
homogeneous compute, homogeneous memory

Is this a legal program outcome?
STx=1 D flag =1 Forbidden: SC, x86-TSO, RVTSO
ST flag =1 LD x=0 Permitted: Arm, Power, RVWMO, PTX

[ “For a shared memory machine, the memory
consistency model [MCM] defines the
architecturally visible behavior of its memory
system. Consistency definitions provide rules
about loads and stores (or memory reads and
writes) and how they act upon memory. As
part of supporting a memory consistency
model, many machines also provide cache
coherence protocols that ensure that multiple
cached copies of data are kept up-to-date.”

Shared Memory



Memory consistency (and cache coherence) for
homogeneous compute, homogeneous memory

C1 reads values for x in a different order than C0O writes them!

. . Consistency
STx=1 Forbidden: All cache-coherent architectures
STx=2 Coherence

[ “For a shared memory machine, the memory
consistency model [MCM] defines the
architecturally visible behavior of its memory
system. Consistency definitions provide rules
about loads and stores (or memory reads and
Shared Memory writes) and how they act upon memory. As
part of supporting a memory consistency
model, many machines also provide cache
coherence protocols that ensure that multiple
cached copies of data are kept up-to-date.”




C

Orchestrating correct parallel program execution for
homogeneous compute, homogeneous memory

atomic_boolflag; // C11 memory model
atomic_int x;

// thread 0
x.store(1, RLX)

flag.store (true, REL)

// core O
STX=1

ST flag = 1

IH

// thread 1

if (flag.load(ACQ) == true)

@ad(RLX) ==

LL-to-ISA MCM compiler mappings

// core 1
LD flag = r1
cmpri, #1

bne end

LD X = r2

end:

High-level language (HLL) MCMs
specify the ordering requirements of
memory operations in a program.

C11 MCM says that assert cannot fail.

Instruction set architecture (ISA) MCM
specifies the ordering guarantees of
memory operations executing on hardware.

Forbidden: SC, x86-TSO, RVTSO
Permitted: Arm, Power, RVWMO, PTX



Orchestrating correct parallel program execution for
homogeneous compute, homogeneous memory

atomic_bool flag;

tomic int x-
atomic_intx High-level language (HLL) MCMs
// thread O // thread 1 specify the ordering requirements of
x.store(1, RLX) if (flag.load(ACQ) == true) memory operations in a program.

flag.store (true, REL) @ad(RLX) ==D/\/ C11 MCM says that assert cannot fail.

lHLL-to-ISA MCM compiler mappings

// core O // core 1

STX=1 LD flag = r1

Instruction set architecture (ISA) MCM
specifies the ordering guarantees of
memory operations executing on hardware.

cmpri, #1

Need fences
to forbid illegal

execution.
LD X r2 N Permitted: Arm, Power, RYWMO, PTX

ST flag = 1 bne end

end:



Landscape of ISA Memory Consistency Models

Preserved program order within a thread

Store propagation order

Dependency order

fence.acq rel.{scope},

Fer}ces (/\ 2
PPO Store Atomicity ependencies
W—-W R—R R—-W CA|rMCA nMCAFaddr|data|ctrl
v v v v n/a |n/a|n/a
WA19) fence rw,rw v v v v n/a | n/a|n/a
ARMv8 . .
[ARM13] dmb dmb, stl dmb, 1da, ctrlisb dmb, 1da, stl, ctrlisb v v |/
RVWMO fence rw,rw, fence rw,rw, fence rw,rw, fence rw,rw, % % J v
[WA19] fence.tso fence rw,w, fence w,w| fence r,rw, fence r,r |fence r,rw, fence rw,w
ARMvT : .
[ARMI34) dmb dmb dmb, ctrlisb dmb, ctrlisb v | /|
Power hwsync, lwsync, hwsync, lwsync,
[IBM13] hwsync hwsync, Lusync ctrlisync ctrlisync 4 S
fence.sc.{scope},
PTX fence.sc.{scope}, fence.sc.{scope}, fence.acq rel . {scope},
LSG19) fence.sc.{scope}|fence.acq rel.{scope}, [Ld.acquire.{scope}, v




Challenge #1: How do we ensure that
microarchitecture correctly implements its ISA MCM?

// core O // core 1 Fetch0 Fetch1 Decode Issue Exe Commit
STX =1 LD flag = r1
FENCE cmp r1, #1

ST flag =1 bne end

“stores update memory” FENCE
“stores update memory in program order”
LD X > r2
end:

SOTA: Top-down (
verification: Teams of
engineers manually
encode formal MCM
properties, map
down to RTL signals,
and evaluate with
model checkers to get
bounded proofs.

RISC-V CVAG6 Core Microarchitecture
[Zaruba & Benini, GitHub’19]

Shared Memory

Cache coherent shared memory



Our Approach: Bottom-up, Push-button Formal "k)

Verification of Hardware MCM Implementations

— ’"De.sigv\
-1 Mekadaka

+ C:K $dff|Q

Case S&u,c'uj:
RISC-V multi-V-scale [Magyar, GitHub’16]

Rund

2 2
4

r 4

#2 Over-approximation of MCM “state

update” and “ordering” guarantees

J )

~

[Hsiao+, MICRO’21]

cLK $dff|Q
A _L
sw_in_WB WEN
WA | $mem |RD
CLK
$dff | Q —> WD .
A - AO: State element s will never
wdata be updated by instruction i0
# 1 Static Netlist Analysis with opcode Op-‘?
PO: assume (first |—> ( (TPCR_O != pcO [*0:5]) ##1
("PCR_0 == pcO [*1:$]) ##1 ("PCR_O != pcO) ));
Pl: assume (first |—> s_eventually (' PCR_<stage(s)> == pc0));
P2: assume ('PCR_0 == pcO |—> “IFR == i0);
P3: assume (opcode(i0) == op);
4 y 4 A0: assert ('PCR _<stage(s)> == pcO0 |—> s == $past(s));
P4: assume ('PCR_0 == pcO |—> “IFR == i0);
P5: assume (opcode(i0) == op);
P6: assume (first |—> strong(( IFR == “NOP &&
PCR 0 != pcO [*0:$]) ##1 ("PCR 0 == pc0) ) );
Al: assert (first |—> s_eventually( (" PCR_<stage> == pc0) ##l
(! ("PCR_<stage> == pc0)) ));

ef

# 4 Model Checkers

_%

nl )

# 6 Sound & complete formal specification

# 3 SystemVerilog Assertion (SVAm

Multi-V-scale parch MCM synthesis: ~7
mins for 122 SVAs with no bounded
proofs. SOTA hits 11-hour timeout on
many proofs [Manerkar, MICRO’17].



Cache coherence for heterogeneous
compute, homogeneous memory

Homogeneous compute, homogeneous memory
(Verify with bottom-up verification approach.)

Shared Memory Shared Memory

|
.
5
&
£
]
e
g
&
b
H

I}.\es‘lzahts

{0){
DDR logic '+ DDR logic

Shared Memory

CXL [CXL Consortium] R LR e UL
NVLink-C2C [NVIDIA] 2019 Apple A12 (iPhone XS, XS Max, XR)
CAPI [IBM] 40+ accelerators

CCIX[CCIX Consortium]

Cache coherence for
heterogeneous shared memory



Cache coherence for heterogeneous
compute, homogeneous memory

7 CLj

Forbidden: For all clusters CLO & CL;

Shared Memory Shared Memory

Shared Memory

CXL [CXL Consortium]
NVLink-C2C [NVIDIA]
CAPI[IBM]
CCIX[CCIX Consortium]

Cache coherence for
heterogeneous shared memory



Memory consistency for heterogeneous
CompUte, homogeneous memory Consistency

LD flag =1
LD x=0

7 CLj

Coherence

STx=1
ST flag = 1

Forbidden: For some CLO & CL;j
Permitted: For some CLO & CLj

Shared Memory Shared Memory

Shared Memory

CXL [CXL Consortium]
NVLink-C2C [NVIDIA]
CAPI[IBM]
CCIX[CCIX Consortium]

Cache coherence for
heterogeneous shared memory



Challenge #2: How should we fuse heterogeneous
clusters while upholding their MCM guarantees?

STx=1 LD flag =1 ) ,
ST flag = 1 Forbidden: For some CLO & CL;

Permitted: For some CLO & CLj

Shared Memory Shared Memory

SOTA: Redesign & re-verify memory
system for every new combination of
compute clusters (e.g., [Oswald+,

Shared Memory

CXL [CXL Consortium]

NVLink-C2C [NVIDIA] [owen ) (G ] ClusterL |[ Cluster2
[ cacher ) ‘
CAPI [IBM] N

Cache coherence for

Global shared L2

heterogeneous shared memory ) | HeteroGen Merged Directory
CCIX [CCIX Consortium] m |




=
S

Our Approach: Modular MCM-aware coherence
protocol that is designed once & verified once

i

4

[Cleaveland+, In Preparation]

PR/ PR +BR
_ Remote Write/Replacement BREEW BW- ‘
Invalid | | Shared / \ / H .
. ' Co '
emote Rea \

ite / Local Writ ‘ gr~ BW.
ent BW PR/~S PV\‘//S ’\BR
/ PW/~S
¥ MSI + TSO Shared Memory Shared Memory o pw—— " )
@ed PR PR+ PW
S/~s =shared/NOT shared
Translation shim: translates Lazy MESI + Armv7

local coherence protocol

messages into MemGlue

messages accounting for MemGlue Heterogeneous “Consistency Protocol”
b

cluster’s MCM.

MemGlue protocol:

 Coherence protocol that enforces the C11 MCM (a form of
release consistency) globally.

* Does not enforce single-writer multiple reader, so as to
fully exploit relaxed ordering of cluster MCMs ans:i checkOut coherence

« Any C11-compatible cluster can be “plugged in” units (e.g., cache lines), we

« Currently “update-based” for producer-consumer sharing \_can reduce protocol traffic. )

Co-design opportunity: By )
having software checkln




Preliminary Results: MemGlue nearly matches
C11 ordering semantics for 6,738 litmus tests

 Manual complete proof that MemGlue enforces C11 for all programs
* Bounded model checker proof (Murphi) for 6,738 litmus test programs
* Dark/light colors: permitted/forbidden

* Green: C11, Ordered MemGlue, Red: Unordered MemGlue (our proposal)

1.01 =

@\
0.8

m
0.61 M3
0.4-
0.2
0.0 o © o o
| 1

A CoRR WRC IRIW



Preliminary Results: MemGlue exploits weak
ordering behavior as permitted by clusters

100/
80
60
40
20

0/2 1/2 2/2 0/2 1/2 2/2 0/3 1/3 2/3 3/3 0/4 1/4 2/4 3/4 4/4

J SB MP WRC IRIW

Weak threads / Strong threads

% Observable

Next steps: Implement MemGlue as a hardware prototype.



Opportunities for Differentiated Access
(Shared) Memory Architectures

799

MO
@é}nopportunity: )

Data structure granularity
coherence to amortize
metadata and protocol

\.communication overheads. /

Shared Memory

]

E(ample: NVIDIA Grace Hopper Superchip

3: NVLINK C2C E

eeeeeeeeeeeeeee

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/



https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/

Challenges for Differentiated Access
(Shared) Memory Architectures

??

MO

* Challenge #3: Formalizing new reordering
behaviors for software:
 Concurrency created within a thread if data
structures are mapped to distinct memories.
* Persistency mismatches between
heterogeneous memories.
 Data-structure granularity coherence
* Bounded de-synchronization may be
permissible for certain applications (e.g., ML)
* Challenge #4: Designing new safety-nets to
recover ordering when needed




Summary of Shared Memory Research Challenges

Heterogeneous
Homogeneous SoCs, SiPs,
multicores datacenters

}y Homogeneous Heterogeneous

Homogeneous | @ Push-button @ Modular MCM-aware coherent
- verification of hardware | shared memory for heterogeneous
o : :
= MCM implementations shared memory
)
>3 Heterogeneous | ® Formally specifying architectural MCMs for DAMs
@ Orchestrating correct shared memory parallelism on DAMs

DAM Systems

Key takeaway: We’re just getting to the point of specifying/verifying memory consistency in
non-DAM systems...DAM systems will make these problems much harder!



