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20 years ago, fundamental power limits 
forced a move to multi-core processors

Fundamental power limits
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y 2019 • NVIDIA PTX memory model [NVI17]

2018 • RISC-V Weak Memory Order (RVWMO) is ratified [WA19]

• RISC-V Total Store Order (RVTSO) extension is ratified [WA19]

• C. Trippel et al. adapt memory model analysis techniques to the security space [TLM18c,TLM18a,TLM19]
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s • H. Zhang et al.’s axiomatic memory models for operational SoC modules [ZTM+18]

2017 • Y. A. Manerkar et al. link µspec models to Verilog RTL [MLMP17]

• C. Trippel et al.’s full-stack memory model verification approach [TML+17,MTL+16]

• D. Lustig et al.’s Streamlined Causal Consistency (SCC) [LWPG17]

2016 • D. Lustig et al.’s µspec DSL for specifying a hardware system axiomatically [LSMB16]

• ARM ISA-Formal framework [RCD+16]

• M. Batty et al. specify C11 and OpenCL SC atomics axiomatically [BDW16]

• K. Nienhuis et al. specify C11 operationally [NMS16]

2015 • D. Lustig’s thesis [Lus15]

• Y. A. Manerkar et al. extend the µhb analysis paradigm to handle cache coherence protocols [MLPM15]

• D. Lustig et al.’s precise memory model specification format and translation framework [LTPM15]

• G. Petri et al. specify Java’s memory model operationally [PVJ15]

• ARMv8 adds explicit support for release consistency [ARM13b]

2014 • D. Lustig et al.’s seminal work on µhb analysis [LPM14]
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• J. Alglave’s Herding Cats [AMT14]

• RISC-V Atomics Extension memory model [WLPA14]

2013 •
2012 • J. Alglave’s hierarchy of weak memory models [Alg12]

• Mador-Haim et al. specify Power axiomatically [MHMS+12]

2011 • Standardization of C/C++ memory model [ISO11a, ISO11b]

• M. Batty et al. specify C/C++ [BOS+11]

• Sarkar et al. specify Power operationally [SSA+11]

• ARM errata for load!load hazard [ARM11]

• RISC-V Baseline memory model [WLPA11]

2010 • J. Alglave’s thesis [Alg10]

2009 • Owens et al. specify x86-TSO operationally [OSS09]

2008 • H. Boehm and S. Adve define a memory model for C++ [BA08]

• ARMv7 memory model [ARM08]

2007 •
2006 • Arvind and J.-W. Maessen’s Instruction Reordering + Store Atomicity [AM06]

2005 • J. Manson et al. specify a memory model for Java [MPA05]

• Intel’s first multicore silicon production begins [Int05]

2004 • AMD demonstrates first x86 multicore processor [AMD04]
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• S. Hangal et al.’s TSOTool [HVML04]

2003 •
2002 •
2001 • IBM introduces finer-grained synchronization in POWER4 ISA (lsync/lwsync) [TDF+01]

2000 •
1999 • Commit-Reconcile memory model [SAR99]

1998 •
1997 •
1996 • S. Adve and K. Gharachorloo’s memory model tutorial [AG95]

1995 • K. Gharachorloo’s thesis [Gha95]

1994 • SPARC Relaxed Memory Order (RMO) memory model [SPA94]

1993 • IBM PowerPC memory model [MSSW94,CSB93]

• S. Adve’s thesis [Adv93]

1992 • Alpha memory model [Cor92]

• W. Collier’s store atomicity framework [Col92]

1991 • SPARC Total Store Order (TSO) and Partial Store Order (PSO) memory models [SPA91]

1990 • Gharachorloo et al.’s Release Consistency (RC) [GLL+90]

• S. Adve and M. Hill’s Weak Ordering [AH90]

1989 • J. Goodman’s Processor Consistency [Goo89]

1988 •
1987 •
1986 • Dubois et al. propose weak memory models [DSB86]

1985 •
1984 •
1983 • IBM System/370 memory model [IBM83]

1982 •
1981 •
1980 •
1979 • L. Lamport’s SC for multiprocessors [Lam79]

Figure 1.1: Timeline of selected related work from the memory consistency model
(MCM) literature that is discussed in Section 1.1.2.
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2004: AMD demonstrates first x86 multicore processor
2005: Intel’s first multicore silicon production begins

1983: IBM System/370 memory consistency model

1979: Lamport’s sequential consistency  for multiprocessors

Memory consistency model formalization efforts



Memory consistency (and cache coherence) for 
homogeneous compute, homogeneous memory

Forbidden: SC, x86-TSO, RVTSO
Permitted: Arm, Power, RVWMO, PTX

C0 C1 Ci

Shared Memory

…

ST x = 1
ST flag = 1

LD flag = 1
LD x = 0

“For a shared memory machine, the memory 
consistency model [MCM] defines the 
architecturally visible behavior of its memory 
system. Consistency definitions provide rules 
about loads and stores (or memory reads and 
writes) and how they act upon memory. As 
part of supporting a memory consistency 
model, many machines also provide cache 
coherence protocols that ensure that multiple 
cached copies of data are kept up-to-date.”

Is this a legal program outcome?



Memory consistency (and cache coherence) for 
homogeneous compute, homogeneous memory

Forbidden: All cache-coherent architectures

C0 C1 Ci

Shared Memory

…

ST x = 1
ST x = 2

LD x = 2
LD x = 1

“For a shared memory machine, the memory 
consistency model [MCM] defines the 
architecturally visible behavior of its memory 
system. Consistency definitions provide rules 
about loads and stores (or memory reads and 
writes) and how they act upon memory. As 
part of supporting a memory consistency 
model, many machines also provide cache 
coherence protocols that ensure that multiple 
cached copies of data are kept up-to-date.”

Consistency

Coherence

C1 reads values for x in a different order than C0 writes them! 



Orchestrating correct parallel program execution for 
homogeneous compute, homogeneous memory
atomic_bool flag; // C11 memory model
atomic_int x;

// thread 0 // thread 1

x.store(1, RLX) if (flag.load(ACQ) == true)

flag.store (true, REL) assert (x.load(RLX) == 1)

// core 0 // core 1

ST X = 1 LD flag = r1

cmp r1, #1

ST flag = 1 bne end

LD X à r2

end:

High-level language (HLL) MCMs 
specify the ordering requirements of 
memory operations in a program.

Instruction set architecture (ISA) MCM 
specifies the ordering guarantees of 
memory operations executing on hardware.

C11 MCM says that assert cannot fail.

HLL-to-ISA MCM compiler mappings

?
?

Forbidden: SC, x86-TSO, RVTSO
Permitted: Arm, Power, RVWMO, PTX

X X



Orchestrating correct parallel program execution for 
homogeneous compute, homogeneous memory
atomic_bool flag;
atomic_int x;

// thread 0 // thread 1

x.store(1, RLX) if (flag.load(ACQ) == true)

flag.store (true, REL) assert (x.load(RLX) == 1)

// core 0 // core 1

ST X = 1 LD flag = r1

FENCE cmp r1, #1

ST flag = 1 bne end

FENCE

LD X à r2

end:

High-level language (HLL) MCMs 
specify the ordering requirements of 
memory operations in a program.

Instruction set architecture (ISA) MCM 
specifies the ordering guarantees of 
memory operations executing on hardware.

C11 MCM says that assert cannot fail.

HLL-to-ISA MCM compiler mappings

Forbidden: SC, x86-TSO, RVTSO
Permitted: Arm, Power, RVWMO, PTX

Need fences 
to forbid illegal 
execution.



Landscape of ISA Memory Consistency Models

ISA PPO Store Atomicity Dependencies

MCM W!R W!W R!R R!W MCA rMCA nMCA addr data ctrl

x86-TSO
[OSS09]

mfence 3 3 3 3 n/a n/a n/a

RVTSO
[WA19]

fence rw,rw 3 3 3 3 n/a n/a n/a

ARMv8
[ARM13b]

dmb dmb, stl dmb, lda, ctrlisb dmb, lda, stl, ctrlisb 3 3 3 3

RVWMO
[WA19]

fence rw,rw,
fence.tso

fence rw,rw,
fence rw,w, fence w,w

fence rw,rw,
fence r,rw, fence r,r

fence rw,rw,
fence r,rw, fence rw,w

3 3 3 3

ARMv7
[ARM13a]

dmb dmb dmb, ctrlisb dmb, ctrlisb 3 3 3 3

Power
[IBM13]

hwsync hwsync, lwsync
hwsync, lwsync,

ctrlisync

hwsync, lwsync,
ctrlisync

3 3 3 3

PTX
[LSG19]

fence.sc.{scope}
fence.sc.{scope},

fence.acq rel.{scope},
st.release.{scope}

fence.sc.{scope},
ld.acquire.{scope},

fence.acq rel.{scope},

fence.sc.{scope},
fence.acq rel.{scope},
ld.acquire.{scope},
st.release.{scope}

3

Table 2.1: This table summarizes how a variety of modern ISA memory consistency models (MCMs) compare with respect to the
weak memory model features presented in Section 2.1.2. An “n/a” in a Dependency cell indicates that R!R and R!W orders
are both part of ppo and thus dependency order is enforced by default (from the description of dependencies in this section, they
only relate a load with a po-later load or store). Yellow highlighting denotes cumulative fence instructions for nMCA memory
models. Blue highlighting denotes instructions that can form release-acquire pairs and similarly enforce cumulative ordering.
Note that this table simply provides a high-level overview of the referenced models. As we discuss in Chapter 5, not all tables
summarizing memory model features are su�cient for precise model comparisons.

32

Preserved program order within a thread Store propagation order Dependency order
Fences



Challenge #1: How do we ensure that 
microarchitecture correctly implements its ISA MCM?

// core 0 // core 1

ST X = 1 LD flag = r1

FENCE cmp r1, #1

ST flag = 1 bne end

FENCE

LD X à r2

end:

C0 C1 Ci

Shared Memory

…

Fetch1 Decode Issue Exe CommitFetch0

RISC-V CVA6 Core Microarchitecture
[Zaruba & Benini, GitHub’19]

L1I L1D

L2 

LLC

L1I L1D

L2 

L1I L1D

L2 

DRAM

…

Cache coherent shared memory

SOTA: Top-down 
verification: Teams of 
engineers manually 
encode formal MCM 
properties, map 
down to RTL signals, 
and evaluate with 
model checkers to get 
bounded proofs.

“stores update memory”
“stores update memory in program order”



Our Approach: Bottom-up, Push-button Formal 
Verification of Hardware MCM Implementations
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#2 Over-approximation of MCM “state 
update” and “ordering” guarantees

#3 SystemVerilog Assertion (SVA) 
Embedding w/ Templates

+
sw_in_WB

CLK
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$dff Q

inst_DX
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WEN
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wdata
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#1 Static Netlist Analysis
RTL

Design 
Metadata
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P0: assume (first |�> ( (`PCR_0 != pc0 [*0:$]) ##1

(`PCR_0 == pc0 [*1:$]) ##1 (`PCR_0 != pc0) ));

P1: assume (first |�> s_eventually(`PCR_<stage(s)> == pc0));

P2: assume (`PCR_0 == pc0 |�> `IFR == i0);

P3: assume (opcode(i0) == op);

A0: assert (`PCR_<stage(s)> == pc0 |�> s == $past(s));

(a) Assertion A0 attempts to prove that state element s will never
be updated by the execution of instruction i0 with opcode op.
PCR_<stage(s)> represents string concatenation of PCR_ with the
stage ID associated with s.

P4: assume (`PCR_0 == pc0 |�> `IFR == i0);

P5: assume (opcode(i0) == op);

P6: assume (first |�> strong((`IFR == `NOP &&

`PCR_0 != pc0 [*0:$]) ##1 (`PCR_0 == pc0) ) );

A1: assert (first |�> s_eventually( (`PCR_<stage> == pc0) ##1

(!(`PCR_<stage> == pc0)) ));

(b) Assertion A1 attempts to prove that instruction i0 with opcode
opwill eventually progress to and exit some pipeline stage, stage. It
is used to prove precondition P1 in (a) for stages where instructions
of type op can update state—i.e., where instructions of type op fail
A0 for some s in stage.

Figure 4: ���2µ���� uses the SVA templates in (a) and (b) to
instantiate intra-instructionHBI hypotheses and ultimately
synthesize intra-instructionHBIs (§4.2.3). Template parame-
ters are blue. Symbolic values that correspond to the instruc-
tion under evaluation by the property are green.

Nodes which pass the HBI hypothesis evaluation of §4.2.3 are
considered to be always updated on behalf of the instruction type
under evaluation and are used to construct a specialized instruction-
speci�c DFG. This is done by extracting a new DFG from the full-
design DFG that is restricted to only contain nodes corresponding
to these always-updated state elements. During extraction, DFG
edges are retained if they directly relate extracted nodes. Immediate
parent nodes of the always-updated state-elements in the full-design
DFG are also extracted. These aid in synthesizing inter-instruction
HBIs that result from data-�ow dependencies as detailed in §4.3.5.

Fig. 3c gives an example of two simpli�ed instruction-speci�c
DFGs corresponding to the sw (top) and lw (bottom) instructions of
the RISC-V V-scale. The primary root node of each graph is the IFR—
the inst_DX signal for the V-scale—and all nodes reachable from it
are always updated on behalf of the instruction that corresponds
to the DFG. Other nodes with no incoming edges, such as regfile
and mem, are reserved parent nodes.

Recall that the intra-instruction HBIs for a particular instruc-
tion type articulate which µhb nodes and intra-instruction µhb
edges must exist in any µhb graph featuring an instance of said
instruction. The nodes reachable from the primary root node in
an instruction-speci�c DFG indicate relevant µhb nodes, while
directed data-�ow edges (relating the reachable nodes) indicate
relevant intra-instruction µhb edges. In Figs. 3d and 3e, the nodes
and black edges correspond to intra-instruction HBIs for lw and sw
on the V-scale.

4.3 Synthesizing Inter-Instruction HBIs
After synthesizing a complete set of intra-instruction HBIs, the
���2µ���� tool synthesizes inter-instruction HBIs which result

from structural or data-�ow dependencies (§3.3). For each cate-
gory of inter-instruction HBIs, ���2µ���� compares all pairs of
per-instruction DFGs to identify all possible inter-instruction inter-
actions, each of which requires an HBI to be instantiated. Whenever
���2µ���� determines that an HBI must be synthesized to describe
a potential pairwise interaction between instructions, it formulates
HBI hypotheses (as SVAs) so that the precise HBI can be deduced
with the help of JasperGold. In this way, ���2µ���� ensures that
the �nal µ���� model contains a complete set of inter-instruction
HBIs that have all been formally veri�ed.

Notably, inter-instruction HBIs can describe interactions be-
tween instructions via local on-core resources (e.g., pipeline regis-
ters) or resources that are o�-core and thus remote (e.g., memories,
including on-chip caches). Furthermore, inter-instruction HBIs can
describe interactions between instructions executing on either the
same processor core (intra-core HBIs) or on di�erent cores (inter-core
HBIs). Inter-core HBIs inherently involve interactions via shared
remote state whereas intra-core HBIs may be facilitated via inter-
actions through either local or remote state elements.

When instantiating inter-instruction HBIs as SVAs, ���2µ����
distinguishes HBI hypotheses involving local versus remote re-
sources. That said, the general structure of inter-instruction HBI
hypotheses remains the same regardless of whether local versus
remote state elements are involved. §4.3.1, §4.3.2, and §4.3.5 give
the general procedure for generating relevant inter-instruction HBI
hypotheses regardless of the types of state elements involved, while
§4.3.3 describes how HBI hypotheses are instantiated in SVA form
in slightly di�erent ways for local versus global resources.

4.3.1 Generating Spatial Structural HBI Hypotheses. A spatial struc-
tural dependency exists between a pair of instructions if they both
update an identical hardware state element during their execution.
To identify these dependencies, ���2µ���� iterates over all pairs
of instructions and compares their DFGs to �nd common nodes
(representing identical state elements) which are reachable from
the IFRs (the primary root nodes) in both. Given a pair of instruc-
tions, each such pair of common nodes constitutes a unique spatial
structural dependency. In Fig. 3c, inst_DX, sw_in_WB, lw_in_WB,
and wdata (four distinct state elements) are all updated by both lw
and sw, since nodes representing these state elements are all reach-
able from the IFR nodes in their corresponding DFGs (recall that
inst_DX is the IFR for the multi-V-scale). Four spatial structural de-
pendencies therefore exist between lw and sw on the multi-V-scale.
Note that the four spatial dependencies identi�ed here all involve
local state elements, but spatial dependencies can involve global
state elements as well.

A spatial structural dependency between a pair of instructions
always results in the inclusion of a corresponding HBI in the �nal
µ���� model. However, the direction of the HBI must be deduced.
For each spatial structural dependency identi�ed between all pairs
of instructions (including same-instruction pairs), ���2µ���� either
directly outputs an HBI or generates HBI hypotheses to determine
the direction of the HBI corresponding to the dependency with
respect to a reference order if one exists.

As discussed in §3.3.1, pairs of instructions cannot be constrained
to update a common state element in a particular order without

Figure 4: ���2µ���� uses the SVA templates in (a) and (b) to
instantiate intra-instructionHBI hypotheses and ultimately
synthesize intra-instructionHBIs (§4.2.3). Template parame-
ters are blue. Symbolic values that correspond to the instruc-
tion under evaluation by the property are green.

Nodes which pass the HBI hypothesis evaluation of §4.2.3 are
considered to be always updated on behalf of the instruction type
under evaluation and are used to construct a specialized instruction-
speci�c DFG. This is done by extracting a new DFG from the full-
design DFG that is restricted to only contain nodes corresponding
to these always-updated state elements. During extraction, DFG
edges are retained if they directly relate extracted nodes. Immediate
parent nodes of the always-updated state-elements in the full-design
DFG are also extracted. These aid in synthesizing inter-instruction
HBIs that result from data-�ow dependencies as detailed in §4.3.5.

Fig. 3c gives an example of two simpli�ed instruction-speci�c
DFGs corresponding to the sw (top) and lw (bottom) instructions of
the RISC-V V-scale. The primary root node of each graph is the IFR—
the inst_DX signal for the V-scale—and all nodes reachable from it
are always updated on behalf of the instruction that corresponds
to the DFG. Other nodes with no incoming edges, such as regfile
and mem, are reserved parent nodes.

Recall that the intra-instruction HBIs for a particular instruc-
tion type articulate which µhb nodes and intra-instruction µhb
edges must exist in any µhb graph featuring an instance of said
instruction. The nodes reachable from the primary root node in
an instruction-speci�c DFG indicate relevant µhb nodes, while
directed data-�ow edges (relating the reachable nodes) indicate
relevant intra-instruction µhb edges. In Figs. 3d and 3e, the nodes
and black edges correspond to intra-instruction HBIs for lw and sw
on the V-scale.

4.3 Synthesizing Inter-Instruction HBIs
After synthesizing a complete set of intra-instruction HBIs, the
���2µ���� tool synthesizes inter-instruction HBIs which result

from structural or data-�ow dependencies (§3.3). For each cate-
gory of inter-instruction HBIs, ���2µ���� compares all pairs of
per-instruction DFGs to identify all possible inter-instruction inter-
actions, each of which requires an HBI to be instantiated. Whenever
���2µ���� determines that an HBI must be synthesized to describe
a potential pairwise interaction between instructions, it formulates
HBI hypotheses (as SVAs) so that the precise HBI can be deduced
with the help of JasperGold. In this way, ���2µ���� ensures that
the �nal µ���� model contains a complete set of inter-instruction
HBIs that have all been formally veri�ed.

Notably, inter-instruction HBIs can describe interactions be-
tween instructions via local on-core resources (e.g., pipeline regis-
ters) or resources that are o�-core and thus remote (e.g., memories,
including on-chip caches). Furthermore, inter-instruction HBIs can
describe interactions between instructions executing on either the
same processor core (intra-core HBIs) or on di�erent cores (inter-core
HBIs). Inter-core HBIs inherently involve interactions via shared
remote state whereas intra-core HBIs may be facilitated via inter-
actions through either local or remote state elements.

When instantiating inter-instruction HBIs as SVAs, ���2µ����
distinguishes HBI hypotheses involving local versus remote re-
sources. That said, the general structure of inter-instruction HBI
hypotheses remains the same regardless of whether local versus
remote state elements are involved. §4.3.1, §4.3.2, and §4.3.5 give
the general procedure for generating relevant inter-instruction HBI
hypotheses regardless of the types of state elements involved, while
§4.3.3 describes how HBI hypotheses are instantiated in SVA form
in slightly di�erent ways for local versus global resources.

4.3.1 Generating Spatial Structural HBI Hypotheses. A spatial struc-
tural dependency exists between a pair of instructions if they both
update an identical hardware state element during their execution.
To identify these dependencies, ���2µ���� iterates over all pairs
of instructions and compares their DFGs to �nd common nodes
(representing identical state elements) which are reachable from
the IFRs (the primary root nodes) in both. Given a pair of instruc-
tions, each such pair of common nodes constitutes a unique spatial
structural dependency. In Fig. 3c, inst_DX, sw_in_WB, lw_in_WB,
and wdata (four distinct state elements) are all updated by both lw
and sw, since nodes representing these state elements are all reach-
able from the IFR nodes in their corresponding DFGs (recall that
inst_DX is the IFR for the multi-V-scale). Four spatial structural de-
pendencies therefore exist between lw and sw on the multi-V-scale.
Note that the four spatial dependencies identi�ed here all involve
local state elements, but spatial dependencies can involve global
state elements as well.

A spatial structural dependency between a pair of instructions
always results in the inclusion of a corresponding HBI in the �nal
µ���� model. However, the direction of the HBI must be deduced.
For each spatial structural dependency identi�ed between all pairs
of instructions (including same-instruction pairs), ���2µ���� either
directly outputs an HBI or generates HBI hypotheses to determine
the direction of the HBI corresponding to the dependency with
respect to a reference order if one exists.

As discussed in §3.3.1, pairs of instructions cannot be constrained
to update a common state element in a particular order without
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P0: assume (first |�> ( (`PCR_0 != pc0 [*0:$]) ##1

(`PCR_0 == pc0 [*1:$]) ##1 (`PCR_0 != pc0) ));

P1: assume (first |�> s_eventually(`PCR_<stage(s)> == pc0));

P2: assume (`PCR_0 == pc0 |�> `IFR == i0);

P3: assume (opcode(i0) == op);

A0: assert (`PCR_<stage(s)> == pc0 |�> s == $past(s));

(a) Assertion A0 attempts to prove that state element s will never
be updated by the execution of instruction i0 with opcode op.
PCR_<stage(s)> represents string concatenation of PCR_ with the
stage ID associated with s.

P4: assume (`PCR_0 == pc0 |�> `IFR == i0);

P5: assume (opcode(i0) == op);

P6: assume (first |�> strong((`IFR == `NOP &&

`PCR_0 != pc0 [*0:$]) ##1 (`PCR_0 == pc0) ) );

A1: assert (first |�> s_eventually( (`PCR_<stage> == pc0) ##1

(!(`PCR_<stage> == pc0)) ));

(b) Assertion A1 attempts to prove that instruction i0 with opcode
opwill eventually progress to and exit some pipeline stage, stage. It
is used to prove precondition P1 in (a) for stages where instructions
of type op can update state—i.e., where instructions of type op fail
A0 for some s in stage.

Figure 4: ���2µ���� uses the SVA templates in (a) and (b) to
instantiate intra-instructionHBI hypotheses and ultimately
synthesize intra-instructionHBIs (§4.2.3). Template parame-
ters are blue. Symbolic values that correspond to the instruc-
tion under evaluation by the property are green.

Nodes which pass the HBI hypothesis evaluation of §4.2.3 are
considered to be always updated on behalf of the instruction type
under evaluation and are used to construct a specialized instruction-
speci�c DFG. This is done by extracting a new DFG from the full-
design DFG that is restricted to only contain nodes corresponding
to these always-updated state elements. During extraction, DFG
edges are retained if they directly relate extracted nodes. Immediate
parent nodes of the always-updated state-elements in the full-design
DFG are also extracted. These aid in synthesizing inter-instruction
HBIs that result from data-�ow dependencies as detailed in §4.3.5.

Fig. 3c gives an example of two simpli�ed instruction-speci�c
DFGs corresponding to the sw (top) and lw (bottom) instructions of
the RISC-V V-scale. The primary root node of each graph is the IFR—
the inst_DX signal for the V-scale—and all nodes reachable from it
are always updated on behalf of the instruction that corresponds
to the DFG. Other nodes with no incoming edges, such as regfile
and mem, are reserved parent nodes.

Recall that the intra-instruction HBIs for a particular instruc-
tion type articulate which µhb nodes and intra-instruction µhb
edges must exist in any µhb graph featuring an instance of said
instruction. The nodes reachable from the primary root node in
an instruction-speci�c DFG indicate relevant µhb nodes, while
directed data-�ow edges (relating the reachable nodes) indicate
relevant intra-instruction µhb edges. In Figs. 3d and 3e, the nodes
and black edges correspond to intra-instruction HBIs for lw and sw
on the V-scale.

4.3 Synthesizing Inter-Instruction HBIs
After synthesizing a complete set of intra-instruction HBIs, the
���2µ���� tool synthesizes inter-instruction HBIs which result

from structural or data-�ow dependencies (§3.3). For each cate-
gory of inter-instruction HBIs, ���2µ���� compares all pairs of
per-instruction DFGs to identify all possible inter-instruction inter-
actions, each of which requires an HBI to be instantiated. Whenever
���2µ���� determines that an HBI must be synthesized to describe
a potential pairwise interaction between instructions, it formulates
HBI hypotheses (as SVAs) so that the precise HBI can be deduced
with the help of JasperGold. In this way, ���2µ���� ensures that
the �nal µ���� model contains a complete set of inter-instruction
HBIs that have all been formally veri�ed.

Notably, inter-instruction HBIs can describe interactions be-
tween instructions via local on-core resources (e.g., pipeline regis-
ters) or resources that are o�-core and thus remote (e.g., memories,
including on-chip caches). Furthermore, inter-instruction HBIs can
describe interactions between instructions executing on either the
same processor core (intra-core HBIs) or on di�erent cores (inter-core
HBIs). Inter-core HBIs inherently involve interactions via shared
remote state whereas intra-core HBIs may be facilitated via inter-
actions through either local or remote state elements.

When instantiating inter-instruction HBIs as SVAs, ���2µ����
distinguishes HBI hypotheses involving local versus remote re-
sources. That said, the general structure of inter-instruction HBI
hypotheses remains the same regardless of whether local versus
remote state elements are involved. §4.3.1, §4.3.2, and §4.3.5 give
the general procedure for generating relevant inter-instruction HBI
hypotheses regardless of the types of state elements involved, while
§4.3.3 describes how HBI hypotheses are instantiated in SVA form
in slightly di�erent ways for local versus global resources.

4.3.1 Generating Spatial Structural HBI Hypotheses. A spatial struc-
tural dependency exists between a pair of instructions if they both
update an identical hardware state element during their execution.
To identify these dependencies, ���2µ���� iterates over all pairs
of instructions and compares their DFGs to �nd common nodes
(representing identical state elements) which are reachable from
the IFRs (the primary root nodes) in both. Given a pair of instruc-
tions, each such pair of common nodes constitutes a unique spatial
structural dependency. In Fig. 3c, inst_DX, sw_in_WB, lw_in_WB,
and wdata (four distinct state elements) are all updated by both lw
and sw, since nodes representing these state elements are all reach-
able from the IFR nodes in their corresponding DFGs (recall that
inst_DX is the IFR for the multi-V-scale). Four spatial structural de-
pendencies therefore exist between lw and sw on the multi-V-scale.
Note that the four spatial dependencies identi�ed here all involve
local state elements, but spatial dependencies can involve global
state elements as well.

A spatial structural dependency between a pair of instructions
always results in the inclusion of a corresponding HBI in the �nal
µ���� model. However, the direction of the HBI must be deduced.
For each spatial structural dependency identi�ed between all pairs
of instructions (including same-instruction pairs), ���2µ���� either
directly outputs an HBI or generates HBI hypotheses to determine
the direction of the HBI corresponding to the dependency with
respect to a reference order if one exists.

As discussed in §3.3.1, pairs of instructions cannot be constrained
to update a common state element in a particular order without

Figure 4: ���2µ���� uses the SVA templates in (a) and (b) to
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tion under evaluation by the property are green.

Nodes which pass the HBI hypothesis evaluation of §4.2.3 are
considered to be always updated on behalf of the instruction type
under evaluation and are used to construct a specialized instruction-
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hypotheses remains the same regardless of whether local versus
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the general procedure for generating relevant inter-instruction HBI
hypotheses regardless of the types of state elements involved, while
§4.3.3 describes how HBI hypotheses are instantiated in SVA form
in slightly di�erent ways for local versus global resources.

4.3.1 Generating Spatial Structural HBI Hypotheses. A spatial struc-
tural dependency exists between a pair of instructions if they both
update an identical hardware state element during their execution.
To identify these dependencies, ���2µ���� iterates over all pairs
of instructions and compares their DFGs to �nd common nodes
(representing identical state elements) which are reachable from
the IFRs (the primary root nodes) in both. Given a pair of instruc-
tions, each such pair of common nodes constitutes a unique spatial
structural dependency. In Fig. 3c, inst_DX, sw_in_WB, lw_in_WB,
and wdata (four distinct state elements) are all updated by both lw
and sw, since nodes representing these state elements are all reach-
able from the IFR nodes in their corresponding DFGs (recall that
inst_DX is the IFR for the multi-V-scale). Four spatial structural de-
pendencies therefore exist between lw and sw on the multi-V-scale.
Note that the four spatial dependencies identi�ed here all involve
local state elements, but spatial dependencies can involve global
state elements as well.

A spatial structural dependency between a pair of instructions
always results in the inclusion of a corresponding HBI in the �nal
µ���� model. However, the direction of the HBI must be deduced.
For each spatial structural dependency identi�ed between all pairs
of instructions (including same-instruction pairs), ���2µ���� either
directly outputs an HBI or generates HBI hypotheses to determine
the direction of the HBI corresponding to the dependency with
respect to a reference order if one exists.

As discussed in §3.3.1, pairs of instructions cannot be constrained
to update a common state element in a particular order without
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Cache coherence for heterogeneous 
compute, homogeneous memory
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Challenge #2: How should we fuse heterogeneous 
clusters while upholding their MCM guarantees?
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SOTA: Redesign & re-verify memory 
system for every new combination of 
compute clusters (e.g., [Oswald+, 
HPCA’22]).



Our Approach: Modular MCM-aware coherence 
protocol that is designed once & verified once 
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Translation Shim
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Lazy MESI + Armv7Translation shim: translates 
local coherence protocol 
messages into MemGlue 
messages, accounting for 
cluster’s MCM. MemGlue protocol:

• Coherence protocol that enforces the C11 MCM (a form of 
release consistency) globally.

• Does not enforce single-writer multiple reader, so as to 
fully exploit relaxed ordering of cluster MCMs

• Any C11-compatible cluster can be “plugged in”
• Currently “update-based” for producer-consumer sharing

Co-design opportunity: By 
having software checkIn 
and checkOut coherence 
units (e.g., cache lines), we 
can reduce protocol traffic.

[Cleaveland+, In Preparation]



Preliminary Results: MemGlue nearly matches 
C11 ordering semantics for 6,738 litmus tests

We first implement MEMGLUEO and MEMGLUEU in Mur',
and verify these implementations with respect to a test suite
derived from the CoRR, SB, MP, WRC, and IRIW litmus
tests [6]. The first suite of 1,215 tests features all variations
of these litmus tests produced by assigning each instruction
with each relevant C11 memory order [3]. The second suite of
3,645 tests is derived from the first by considering all possible
placements of SC fences. For all tests, we treat the clusters
as black-boxes that emit MEMGLUE operations as defined in
their assigned litmus test thread. That is, our goal is to verify
the MEMGLUE protocol itself independent of shim translation.

Fig. 13a shows the results of running these tests with Mur'
(sans fence tests, for space reasons). For each implementation,
no test forbidden by C11 is observable in either MEMGLUE
variant – both uphold C11 with respect to the litmus tests. Ad-
ditionally, MEMGLUEU allows most of the behavior that C11
does, meaning that MEMGLUEU’s reordering optimizations
are indeed leveraging the reordering behavior that is allowable
by C11 (and thus the weak MCMs C11 accommodates).

Next, we run a suite of 1,878 tests on MEMGLUEU, in
which we map all variations of the five tests across a set of
“strong” and “weak” clusters. The “strong” clusters implement
a standard MSI protocol locally [51], and we reverse-compile
all instructions to SC to model a TSO cluster (§IV-D1). The
“weak” clusters are again black boxes in that they do not
contain a local protocol, and reverse compilation could emit
any combination of the atomics (modeling a cluster which
maximally exploits the strengths offered by C11). The goal of
these experiments is to demonstrate that MEMGLUEU permits
more relaxed behavior as the clusters it unifies become weaker.

Fig. 13b shows that as a greater portion of the litmus test
threads are mapped to weak clusters, more reordering behavior
is allowed by MEMGLUEU. This result shows that as the
system-wide MCM becomes weaker, MEMGLUEU is able to
leverage the laxness in order to allow more reorderings.

B. Proof
Since our Mur' model checking results represent bounded

proofs of MEMGLUE’s correctness guarantees, we construct a
manual proof that for any program, none of its C11-forbidden
executions are observable in a MEMGLUE system. This is a
particularly important result of this work – proving that a
cache coherence protocol implements a particular MCM is
notoriously difficult, even with protocols and MCMs that are
significantly simpler than MEMGLUE and C11 [13]. This proof
is also reusable across all MEMGLUE-enabled systems; only
the shim-local proofs need to be re-done for each new cluster.

VII. RELATED WORK

Recent work advocates for fine-grained protocols that guar-
antee coherence, but ignore consistency. Spandex is a variation
of a DeNovo protocol that addresses inherent differences in
memory access patterns in CPUs and GPUs which make them
hard to combine in a performant way [8]. MEMGLUE’s shims
and CC are similar to Spandex’s device-side and integration
logic, and both approaches avoid pairwise translation between

(a) ORDERED (YELLOW) AND UNORDERED (RED) MEMGLUE RESULTS.
GREEN COLUMNS SHOW WHAT IS PERMITTED IN C11. DARK (LIGHT)
COLORS ARE THE PORTION OF OBSERVABLE (UNOBSERVABLE) TESTS.

(b) RESULTS OF TESTS RUN ON STRONG AND WEAK CORES.

Fig. 13: Litmus testing results.

primitives of different protocols. But, Spandex does not imple-
ment support for inter-device MCM mismatches. MEMGLUE,
in contrast, can merge together MCMs of varying degrees of
relaxation and provably uphold a system-wide MCM.

Crossing Guard [54] is a protocol interface that addresses
coherence between CPUs and accelerators from a safety
standpoint. In particular, it restricts the ability of buggy or
malicious accelerators to crash or deadlock the host. Crossing
Guard does not account for MCM mismatches, and can require
changes to local cache coherence protocols.

HeteroGen [55] is the first work to tackle MCM mismatches
in heterogeneous systems by automatically generating a new
consistency protocol per heterogeneous SoC. Since Hetero-
Gen produces a fresh system-wide MCM and protocol for
each distinct set of clusters, it lacks modularity and requires
significant proof effort. MEMGLUE benefits from a modular
design and a single system-wide correctness proof (§V-C)
that transcends all MEMGLUE implementations. Follow-up
work [28] generalizes the HeteroGen approach to handle
scoped, non-MCA MCMs, but it exhibits the same modularity
and proof challenges and lacks a concrete implementation.

VIII. CONCLUSIONS

This paper presents MEMGLUE, an update-based consis-
tency protocol that facilitates cache-coherent shared mem-
ory among heterogeneous clusters with diverse MCMs.
MEMGLUE equips each cluster with a hardware shim that
translates cluster-level operations into MEMGLUE operations;
it then facilitates communication between shims by sending
and receiving these protocol operations according to the order-
ing requirements of C11. We prove that MEMGLUE upholds
C11 with respect to several thousand litmus tests (using model
checking) and for all programs (with a manual proof).
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• Manual complete proof that MemGlue enforces C11 for all programs
• Bounded model checker proof (Murphi) for 6,738 litmus test programs
• Dark/light colors: permitted/forbidden
• Green: C11, Yellow: Ordered MemGlue, Red: Unordered MemGlue (our proposal)
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manual proof that for any program, none of its C11-forbidden
executions are observable in a MEMGLUE system. This is a
particularly important result of this work – proving that a
cache coherence protocol implements a particular MCM is
notoriously difficult, even with protocols and MCMs that are
significantly simpler than MEMGLUE and C11 [13]. This proof
is also reusable across all MEMGLUE-enabled systems; only
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primitives of different protocols. But, Spandex does not imple-
ment support for inter-device MCM mismatches. MEMGLUE,
in contrast, can merge together MCMs of varying degrees of
relaxation and provably uphold a system-wide MCM.

Crossing Guard [54] is a protocol interface that addresses
coherence between CPUs and accelerators from a safety
standpoint. In particular, it restricts the ability of buggy or
malicious accelerators to crash or deadlock the host. Crossing
Guard does not account for MCM mismatches, and can require
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HeteroGen [55] is the first work to tackle MCM mismatches
in heterogeneous systems by automatically generating a new
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Gen produces a fresh system-wide MCM and protocol for
each distinct set of clusters, it lacks modularity and requires
significant proof effort. MEMGLUE benefits from a modular
design and a single system-wide correctness proof (§V-C)
that transcends all MEMGLUE implementations. Follow-up
work [28] generalizes the HeteroGen approach to handle
scoped, non-MCA MCMs, but it exhibits the same modularity
and proof challenges and lacks a concrete implementation.

VIII. CONCLUSIONS

This paper presents MEMGLUE, an update-based consis-
tency protocol that facilitates cache-coherent shared mem-
ory among heterogeneous clusters with diverse MCMs.
MEMGLUE equips each cluster with a hardware shim that
translates cluster-level operations into MEMGLUE operations;
it then facilitates communication between shims by sending
and receiving these protocol operations according to the order-
ing requirements of C11. We prove that MEMGLUE upholds
C11 with respect to several thousand litmus tests (using model
checking) and for all programs (with a manual proof).
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Next steps: Implement MemGlue as a hardware prototype.



Opportunities for Differentiated Access 
(Shared) Memory Architectures
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https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/

Example: NVIDIA Grace Hopper Superchip
Co-design opportunity: 
Data structure granularity 
coherence to amortize 
metadata and protocol 
communication overheads.

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/


Challenges for Differentiated Access 
(Shared) Memory Architectures
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• Challenge #3: Formalizing new reordering 
behaviors for software:
• Concurrency created within a thread if data 

structures are mapped to distinct memories.
• Persistency mismatches between 

heterogeneous memories.
• Data-structure granularity coherence
• Bounded de-synchronization may be 

permissible for certain applications (e.g., ML)
• Challenge #4: Designing new safety-nets to 

recover ordering when needed



Summary of Shared Memory Research Challenges

Compute

Homogeneous Heterogeneous

M
em

or
y

Homogeneous ① Push-button 
verification of hardware 
MCM implementations

② Modular MCM-aware coherent 
shared memory for heterogeneous 
shared memory

Heterogeneous ③ Formally specifying architectural MCMs for DAMs
④ Orchestrating correct shared memory parallelism on DAMs

Homogeneous 
multicores

Heterogeneous 
SoCs, SiPs, 
datacenters

DAM Systems

Key takeaway: We’re just getting to the point of specifying/verifying memory consistency in 
non-DAM systems…DAM systems will make these problems much harder!


